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Lots of high-dimensional noisy data...

Zambian President Levy
Mwanawasa has won a
second term in office in
an election his challenger
Michael Sata accused him
of rigging, official results
showed on Monday.

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Web browser, commonly
perceived as the safer
and more customizable
alternative to market
leader Internet Explorer,
is critically flawed. A
presentation on the flaw
was shown during the
ToorCon hacker conference
in San Diego.
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Lots of high-dimensional noisy data...

face images

Zambian President Levy
Mwanawasa has won a
second term in office in
an election his challenger
Michael Sata accused him
of rigging, official results
showed on Monday.

According to media reports,
a pair of hackers said on
Saturday that the Firefox
Web browser, commonly
perceived as the safer
and more customizable
alternative to market
leader Internet Explorer,
is critically flawed. A
presentation on the flaw
was shown during the
ToorCon hacker conference
in San Diego.

documents

gene expression data
MEG readings

Goal: find a useful representation of data
2



Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x ∈ R361
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Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x ∈ R361

x ∈ R361

z = UTx

z ∈ R10

This setup is the same for
all methods we will talk about today;
the criteria for choosing U
determines the particular algorithm
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Motivation and context

Why do dimensionality reduction? Z = UTX

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

• Direct: use as a model for anomaly detection

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

• Direct: use as a model for anomaly detection

In the context of this class. . .

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

• Direct: use as a model for anomaly detection

In the context of this class. . .

• Feature selection (three weeks ago)

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

• Direct: use as a model for anomaly detection

In the context of this class. . .

• Feature selection (three weeks ago)

• Clustering (last week)

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

• Direct: use as a model for anomaly detection

In the context of this class. . .

• Feature selection (three weeks ago)

• Clustering (last week)

• Nonlinear dimensionality reduction (in 4 weeks)

4



Motivation and context

Why do dimensionality reduction? Z = UTX

• Scientific: understand structure of data (visualization)

• Statistical: fewer dimensions allows better generalization

• Computational: compress data for efficiency (both time/space)

• Direct: use as a model for anomaly detection

In the context of this class. . .

• Feature selection (three weeks ago)

• Clustering (last week)

• Nonlinear dimensionality reduction (in 4 weeks)

These are mostly unsupervised methods: use only X
Contrast with supervised methods

(classification, regression), where (X,Y) are given
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Outline

• Introduction

• Methods

– Principal component analysis (PCA)

– Canonical correlation analysis (CCA)

– Linear discriminant analysis (LDA)

– Non-negative matrix factorization (NMF)

– Independent component analysis (ICA)

• Case studies

– Network anomaly detection

– Multi-task learning

– Part-of-speech tagging

– Brain imaging

• Extensions, related methods, summary
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PCA: first principal component

X = ( x1 . . . xn )
(assume data is centered at 0)

Objective: maximize variance
of projected data

= max
||u||=1

n∑
i=1

( uTxi︸ ︷︷ ︸
length of projection

)2

= max
||u||=1

||uTX||2

= largest eigenvalue of XXT

(covariance matrix)

Another perspective:
minimize reconstruction error∑n

i=1 ||xi − uuTxi||2
(similar to least-squares regression?)
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All principal components

Xd×n = Ud×d Zd×n

( x1 . . . xn ) = ( u1 . . . ud ) ( z1 . . . zn )
X: data in original representation
U: principal components
Z: data in new representation
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All principal components

Xd×n = Ud×d Zd×n

( x1 . . . xn ) = ( u1 . . . ud ) ( z1 . . . zn )
X: data in original representation
U: principal components
Z: data in new representation

• Each xi can be expressed by a linear combination

of principal components: xi =
∑d

j=1 zj
iuj

• Components of projected data are uncorrelated
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r principal components

Xd×n u Ud×r Zr×n

( x1 . . . xn ) u ( u1 . . . ur ) ( z1 . . . zn )
X: data in original representation
U: principal components
Z: data in new representation

Dimensionality reduction:
keep only the largest r of d eigenvectors

xi u
∑r

j=1 zj
iuj
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Eigen-faces [Turk, 1991]

Each xi is a face image, which is a vector in Rd

d is the number of pixels

Each component xj
i is the intensity of the j-th pixel

Xd×n u Ud×r Zr×n

( . . . ) u ( ) ( z1 . . . zn )

These faces are from Yale face dataset. 11



Eigen-faces [Turk, 1991]

Each xi is a face image, which is a vector in Rd

d is the number of pixels

Each component xj
i is the intensity of the j-th pixel

Xd×n u Ud×r Zr×n

( . . . ) u ( ) ( z1 . . . zn )
Used in image classification.

Individual entries in zi’s are more meaningful

than those in xi’s.

These faces are from Yale face dataset. 11



Latent Semantic Analysis [Deerwater, 1990]

Each xi is a bag of words, which is a vector in Rd

d is the number of words in the vocabulary

Each component xj
i is

the number of times word j appears in document i

Xd×n u Ud×r Zr×n

(
stocks: 2 · · · 0

chairman: 4 · · · 1
the: 8 · · · 7
· · · ... · · · ...

wins: 0 · · · 2
game: 1 · · · 3

) u (
0.4 · · · -0.001
0.8 · · · 0.03

0.01 · · · 0.04
... · · · ...

0.002 · · · 2.3
0.003 · · · 1.9

) ( z1 . . . zn )
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Latent Semantic Analysis [Deerwater, 1990]

Each xi is a bag of words, which is a vector in Rd

d is the number of words in the vocabulary

Each component xj
i is

the number of times word j appears in document i

Xd×n u Ud×r Zr×n

(
stocks: 2 · · · 0

chairman: 4 · · · 1
the: 8 · · · 7
· · · ... · · · ...

wins: 0 · · · 2
game: 1 · · · 3

) u (
0.4 · · · -0.001
0.8 · · · 0.03

0.01 · · · 0.04
... · · · ...

0.002 · · · 2.3
0.003 · · · 1.9

) ( z1 . . . zn )
Useful in information retrieval.

Eigen-documents gets at notion of semantics.
How to measure similarity between two documents?

x1,x2 versus z1, z2
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Computing PCA

• Two ways of generating principal components:

– Eigendecomposition: XXT = UΛUT

– Singular value decomposition: X = UΣVT

• Algorithm:

– Center data so that
∑n

i=1 xi = 0
– Run SVD (which is one line in R):

decomp <- svd(X, r)

decomp$u are principal components
decomp$d**2 are eigenvalues

13



How many principal components?

• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate percentage of variance captured.
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How many principal components?

• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate percentage of variance captured.

• Eigenvalues on a face image dataset:

1 2 3 4 5 6 7 8 9 10 11

i

λi

• Eigenvalues drop off sharply, so don’t need that many.

• But variance isn’t everything...
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What if the data doesn’t live in a subspace?

• Ideal case: data lies in low-dimensional subspace
plus Gaussian noise

15



What if the data doesn’t live in a subspace?

• Ideal case: data lies in low-dimensional subspace
plus Gaussian noise

• A hypothetical example:

– Original data is 100-dimensional

– True manifold of data is 5-dimensional
but lives in a 8-dimensional subspace

– PCA can just find the 8-dimensional subspace,
which still reduces redundancy

15



What if the data doesn’t live in a subspace?

• Ideal case: data lies in low-dimensional subspace
plus Gaussian noise

• A hypothetical example:

– Original data is 100-dimensional

– True manifold of data is 5-dimensional
but lives in a 8-dimensional subspace

– PCA can just find the 8-dimensional subspace,
which still reduces redundancy

• A cool technique: random projections

– Randomly project data onto O(log n) dimensions

– Pairwise distances preserved with high probability

– Much more efficient than PCA
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PCA summary

• Intuition: Capture variance of data
Minimize reconstruction error

• Algorithm: eigenvalue problem

• Simple to use

• Applications: eigen-faces, eigen-documents,
eigen-genes, etc.

16



Outline

• Introduction

• Methods

– Principal component analysis (PCA)

– Canonical correlation analysis (CCA)

– Linear discriminant analysis (LDA)

– Non-negative matrix factorization (NMF)

– Independent component analysis (ICA)

• Case studies

– Network anomaly detection

– Multi-task learning

– Part-of-speech tagging

– Brain imaging

• Extensions, related methods, summary
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Motivation for CCA [Hotelling, 1936]

Often, each data point actually consists of many views. . .

• Image retrieval: for each image, have the following:

– Pixels (or other visual features)

– Text around the image
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Motivation for CCA [Hotelling, 1936]

Often, each data point actually consists of many views. . .

• Image retrieval: for each image, have the following:

– Pixels (or other visual features)

– Text around the image

• Genomics: for each gene, have the following:

– Gene expression in DNA microarray

– Position on genome

– Chemical reactions catalyzed in metabolic pathways

Goal: reduce the dimensionality of the views jointly
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From variance to correlation

PCA: find u to maximize variance Ê(uTx)2

CCA: find (u,v) to maximize correlation ĉorr(uTx)(vTy)
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From variance to correlation

PCA: find u to maximize variance Ê(uTx)2

CCA: find (u,v) to maximize correlation ĉorr(uTx)(vTy)

CCA directions (green) PCA directions (black)
Doing PCA separately on each view does not

take advantage of relationship between two views.
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CCA objective function

Objective: maximize correlation between projected views
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= max
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n∑
i=1

(uTxi)(vTyi)

= max
||uTX||=||vTY||=1

uTXYTv
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0 XYT

YXT 0

) (
u
v

)
= λ

(
XXT 0
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) (
u
v
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,

which reduces to an ordinary eigenvalue problem.
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CCA objective function

Objective: maximize correlation between projected views

= max
u,v

ĉorr(uTx,vTy) = max
u,v

ĉov(uTx,vTy)√
v̂ar(uTx)

√
v̂ar(vTy)

= maxcvar(uTx)=cvar(vTy)=1
ĉov(uTx,vTy)

= max
||uTX||=||vTY||=1

n∑
i=1

(uTxi)(vTyi)

= max
||uTX||=||vTY||=1

uTXYTv

= largest generalized eigenvalue λ given by(
0 XYT

YXT 0

) (
u
v

)
= λ

(
XXT 0

0 YYT

) (
u
v

)
,

which reduces to an ordinary eigenvalue problem.
Note: canonical components u,v are invariant to

affine transformation of X,Y
21



Outline

• Introduction

• Methods

– Principal component analysis (PCA)

– Canonical correlation analysis (CCA)

– Linear discriminant analysis (LDA)

– Non-negative matrix factorization (NMF)
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Motivation for LDA [Fisher, 1936]

What is the best linear projection?
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Motivation for LDA [Fisher, 1936]

What is the best linear projection with these labels?

PCA solution LDA solution

Goal: reduce the dimensionality given labels

Idea: want projection to maximize overall interclass variance
relative to intraclass variance

25



LDA objective function

Global mean: µ =
∑

i xi Xg = (x1−µ, . . . ,xn−µ)
Class mean: µy =

∑
i:yi=y xi Xc = (x1−µy1

, . . . ,xn−µyn
)
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c )u.
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Summary so far

• Recall Z u UTX; criteria for U:

– PCA: maximize variance

– CCA: maximize correlation

– LDA: maximize interclass variance
intraclass variance

• All these methods reduce to solving
generalized eigenvalue problems

• Next (NMF, ICA):
more complex criteria for U

27
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• Introduction

• Methods
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Motivation for NMF [Paatero, ’94; Lee, ’99]

Back to basic PCA setting (single view, no labels)

Xd×n u Ud×r Zr×n

( x1 . . . xn ) u ( u1 . . . ur ) ( z1 . . . zn )

X: data in original representation
U: principal components
Z: data in new representation
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Motivation for NMF [Paatero, ’94; Lee, ’99]

Back to basic PCA setting (single view, no labels)

Xd×n u Ud×r Zr×n

( x1 . . . xn ) u ( u1 . . . ur ) ( z1 . . . zn )
• Data is not just any arbitrary real vector:

– Text modeling: each document is a vector of term frequencies

– Gene expression: each gene is a vector of expression profiles

– Collaborative filtering: each user is a vector of movie ratings

• Each basis vector ui is an “eigen-document/eigen-gene/eigen-user”

• Would like U and Z to have only non-negative entries
so that we can interpret each point as combination of prototypes

Goal: reduce the dimensionality given non-negativity constraints
29



Qualitative difference between NMF and PCA

x u
∑r

j=1 zjuj • Sum of basis vectors must
be (positively) additive
(zj ≥ 0)

• The basis vectors ui’s tend
to be sparse

• NMF recovers a parts-
based representation of x
whereas PCA recovers a
holistic representations

30



Qualitative difference between NMF and PCA

x u
∑r

j=1 zjuj • Sum of basis vectors must
be (positively) additive
(zj ≥ 0)

• The basis vectors ui’s tend
to be sparse

• NMF recovers a parts-
based representation of x
whereas PCA recovers a
holistic representations

• Caveat for images:
sparsity depends on proper
alignment (remember,
representation is still a
bag of pixels)

30



NMF machinery

• Objectives to minimize (all entries in X,U,Z non-negative)

– Frobenius norm (same as PCA but with non-negativity constraints):

||X−UZ||2F =
∑n

i=1

∑r
j=1(Xji − (UZ)ji)2

– KL divergence:

KL(X||UZ) =
∑n

i=1

∑r
j=1 Xji log Xji

(UZ)ji
−Xji + (UZ)ji
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• Algorithm

– Hard non-convex optimization problem:
could get stuck in local minima, need to worry about initialization

– Simple/fast multiplicative update rule [Lee & Seung ’99, ’01]

31



NMF machinery

• Objectives to minimize (all entries in X,U,Z non-negative)

– Frobenius norm (same as PCA but with non-negativity constraints):

||X−UZ||2F =
∑n

i=1

∑r
j=1(Xji − (UZ)ji)2

– KL divergence:

KL(X||UZ) =
∑n

i=1

∑r
j=1 Xji log Xji

(UZ)ji
−Xji + (UZ)ji

• Algorithm

– Hard non-convex optimization problem:
could get stuck in local minima, need to worry about initialization

– Simple/fast multiplicative update rule [Lee & Seung ’99, ’01]

• Relationship to other methods

– Vector quantization: zj is 1 in exactly one component j

– Probabilistic latent semantic analysis: equivalent to 2nd objective

– Latent Dirichlet Allocation: more Bayesian version of pLSI 31
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– Principal component analysis (PCA)
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– Non-negative matrix factorization (NMF)

– Independent component analysis (ICA)

• Case studies

– Network anomaly detection

– Multi-task learning

– Part-of-speech tagging

– Brain imaging
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Motivation for ICA [Herault & Jutten, ’86]

x = Uz

Cocktail party problem:
d people, d microphones, n time steps

Assume: people are speaking independently (z)
acoustics mix linearly through an invertible U
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Motivation for ICA [Herault & Jutten, ’86]

x = Uz

Cocktail party problem:
d people, d microphones, n time steps

Assume: people are speaking independently (z)
acoustics mix linearly through an invertible U

X =

Goal: find transformation that makes components
of z as independent as possible

34



PCA versus ICA
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PCA versus ICA

PCA solution ICA solution Original signal

ICA finds independent components; doesn’t work if data is Gaussian:

?
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ICA algorithm

x = Uz

• Preprocessing: whiten data X with PCA
so that components are uncorrelated
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• Find U−1 to maximize independence of z = U−1x
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non-Gaussianity (e.g., kurtosis)
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ICA algorithm

x = Uz

• Preprocessing: whiten data X with PCA
so that components are uncorrelated

• Find U−1 to maximize independence of z = U−1x
• How to measure independence?

mutual information, negentropy,
non-Gaussianity (e.g., kurtosis)

• Hard non-convex optimization

• Methods for solving: fastICA, kernelICA, ProDenICA

36



Outline

• Introduction

• Methods
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Network anomaly detection [Lakhina, ’05]

Raw data: traffic flow on
each link in the network
during each time interval
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Network anomaly detection [Lakhina, ’05]

Raw data: traffic flow on
each link in the network
during each time interval

Model assumption: traffic is sum of flows along a few paths
Apply PCA: principal component intuitively represents a path
Anomaly: when traffic deviates from first few principal components

39



Multi-task learning [Ando & Zhang, ’05]

Setup:

• Have a set of related tasks (classify documents for various users)

• Each task has a classifier (weights of a linear classifier)

• Want to share structure between classifiers
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Multi-task learning [Ando & Zhang, ’05]

Setup:

• Have a set of related tasks (classify documents for various users)

• Each task has a classifier (weights of a linear classifier)

• Want to share structure between classifiers

One step of their procedure:
given a set of classifiers x1, . . . ,xn,
run PCA to identify shared structure:

X = ( x1 . . . xn ) u UZ

Each data point is a linear classifier
Each principal component is a eigen-classifier

40



Unsupervised POS tagging [Schütze, ’95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data .

Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .
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Unsupervised POS tagging [Schütze, ’95]

Part-of-speech (POS) tagging task:
Input: I like reducing the dimensionality of data .

Output: NOUN VERB VERB(-ING) DET NOUN PREP NOUN .

Key idea: words appearing in similar contexts
should have the same POS tags

Problem: contexts are too sparse

Solution: run PCA first,
then cluster using new representation

Each data point is (the context of) a word

41



Brain imaging
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Brain imaging

s =

Data: EEG/MEG/fMRI
readings
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Brain imaging

s =

Data: EEG/MEG/fMRI
readings

Goal: separate signals
into sources

One solution: ICA
Another solution: CCA [Borga, ’02]

The two views are the signals s
at adjacent time steps:

(x1,y1) = (s(1), s(2))
(x2,y2) = (s(2), s(3))
(x3,y3) = (s(3), s(4))

. . .

More robust and faster than ICA
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Extensions

• Kernel trick:

– Find non-linear subspaces with same machinery

• Produce sparse solutions

• Ensure robustness:

– Be insensitive to outliers

• Make probabilistic (e.g., factor analysis):

– Handle missing data

– Estimate uncertainty

– Natural way to incorporate in a larger model

• Automatically choose number of dimensions

44



Curtain call

PCA: find subspace that captures most variance in data;
eigenvalue problem
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Curtain call

PCA: find subspace that captures most variance in data;
eigenvalue problem

CCA: find pair of subspaces that captures most correlation;
generalized eigenvalue problem

LDA: find subspace that maximizes intraclass variance
interclass variance;

generalized eigenvalue problem

NMF: find subspace that minimizes reconstruction error
for non-negative data; non-trivial optimization problem

ICA: find subspace where sources are independent;
non-trivial optimization problem

45


